
The Energy Cascade in Strong Wave Turbulence

Wave turbulence concerns the statistical descrip-
tion of ensembles of interacting dispersive waves
maintained far from equilibrium by coupling the
wave field to external sources and sinks of energy.
The archetypal example is gravity-capillary waves
on the surface of water driven by the wind and
damped by viscosity. Other applications include op-
tical waves of diffraction in nonlinear media, spin
waves in magnetic materials and Alfven waves in
magnetized plasmas to mention a few. Aside from
nonlinear interactions between waves, the other es-
sential ingredient to generate wave turbulence is a
wide separation in scale between the sources and
sinks of energy. Just as in the case of hydrody-
namic turbulence, this leads to the formation of an
inertial range of scales through which energy is con-
servatively transferred by the nonlinear interactions
from the source scale to the sink. This process is
known as an energy cascade. By carrying a flux of
energy through the inertial range, a cascade allows a
wave field to reach a non-equilibrium stationary state
where forcing balances dissipation on average. In re-
ality, other quantities may also produce cascades but
here we only consider energy cascades.

We consider systems where the leading nonlin-
earity is quadratic (3-wave turbulence). Capillary
waves and Alfven waves are in this class. Conserva-
tive dynamics admit a natural Hamiltonian descrip-
tion in terms of Fourier complex canonical variables,
{ak, āk},

H = T +U =
Z

dk ωkākak +
Z

dk u(k). (1)

ω is the linear frequency andu(k) is the nonlinear
(interacting) part of the energy density. Whenu = 0,
Eq. (1) describes free waves with dispersion lawωk,
k being the wave vector. We now supplement Hamil-
ton’s equations with forcing and dissipation giving
the equations of motion

∂tak = iωkak + i
δU
δāk

+ fk −νkak. (2)

For 3-wave turbulence, the nonlinear energy density
takes the general form:

u =
Z

dk1dk2δ(k−k1−k2)Tk;k1,k2[ākak1ak2 +c.c].

In this formulation, all details of the physics is con-
tained in the form of the dispersion relation,ωk, and
the interaction coefficient,Tk;k1,k2. In general, these
are very complicated functions. Nevertheless, in
many applications they are homogeneous functions
of their arguments reflecting an underlying scale in-
variance of the original physical system. We denote
by α and γ the degrees of homogeneity ofωk and
Tk;k1,k2 respectively. Together with the physical di-
mension of the wave field,d, the exponentsα andγ
determine many of the scaling properties of the wave
turbulence described by Eq. (2).

In the inertial range,fk andνk are negligible and
the dynamics are entirely controlled by the Hamil-
tonian part. In the case of weak interactions be-
tween waves, so called weak wave turbulence, an
essentially complete theory was developed by Has-
selmann, Newell, Zakharov and others in the ’60s
and ’70s. In weak wave turbulence, the principle
contribution toH is the quadratic energyT . Non-
linear interactions localise on a set of resonant man-
ifolds and a consistent kinetic theory can be de-
veloped which describes the redistribution ofT by
wave resonances. Higher order moments of the wave
field are expressed in terms of the second moment,
〈āk1ak2〉 = nk1δ(k1− k2). The kinetic equation can
be exactly solved for the stationary state using a tech-
nique now known as the Zakharov Transformation.
The spectrum,nk = c

√
ε k−γ−d is an exact stationary

solution of the kinetic equation which carries a con-
stant flux,ε, of quadratic energy, from large scales
to small. The constantc is calculable. This spec-
trum is the analogue of the Kolmogorov spectrum of
fluid turbulence. Much work on wave turbulence has
focused on its verification.

Despite an extensive theoretical framework for
understanding weak interactions, relatively little is
known about the case where interactions between
waves are strong. The lack of a consistent closure for
higher moments of the theory provides a formidable
obstacle. Nevertheless, we argue that the flux carry-
ing correlation function may be determined exactly,
even in the case where wave interactions are strong.
This is by analogy with the derivation of the 4/5 law
in hydrodynamic turbulence and does not require any
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Figure 1: Flux-correlation function of the model sys-
tem, Eq. (4), in the stationary state for several values
of γ compared with predicted scaling.

closure assumptions. One difficulty in treating the
strongly interacting case is that, in deriving the flux
equation, one must take into account that it is the to-
tal energy,H, which is conserved by the nonlinear
interactions. With this in mind, one can show that
the following continuity equation holds in the iner-
tial range in the stationary state:

Z 2

∏
i=1

(dkik
d−1
i )

[

Tk;k1,k2Π0;1,2−Tk1;k,k2Π1;0,2
]

= 0,

(3)
whereΠ0;1,2 =

R

∏2
i=0dΩi〈Re(ak ∂t āk1 āk2)〉 is the

flux correlation function. Since it involves correla-
tions of fields and time derivatives of fields, it is a
new type of object which has not arisen previously
in systems with quadratic invariants. If we assume
that energy transfer is local in scale and thatΠ0;1,2

is a homogeneous function of degree,h, one can use
the Zakharov Transformation to show that the expo-
nenth =−γ−3d exactly solves Eq. (3). This scaling
for Π0;1,2 describes a constant flux of total energy,
T +U , in the inertial range. This scaling should hold
for both weak and strong wave turbulence.

Even if local transfer is assured, which is diffi-
cult to verify in general, it is strange that an object
like 〈Re(a~k ˙̄a~k1

ā~k2
)〉 should scale since it can be ex-

pressed as a sum of correlation functions of different
orders. To demonstrate proof of concept, we studied
the model Hamiltonian:

H =
n=N

∑
n=−N

ωnanān + kγ
n−1

(

āna2
n−1 + anā2

n−1

)

(4)
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Figure 2: Conversion of linear to nonlinear energy
gives a constant energy flux in the model, Eq. (4)

wherekn = 2n. Locality is enforced since the Hamil-
tonian only contains the interactionskn + kn → kn+1.
The statement that this model system has a constant
flux of total energy can be expressed as

Re〈ān+1 an dtan〉 = −Q(H)
0

4
k−γ

n , (5)

again involving correlations of fields and derivatives.

HereQ(H)
0 is the flux. A numerical validation of this

relation is shown in Fig. 1 for a sequence of values
of the parameterγ. An illustration of how the cas-
cade works is shown in Fig. 2. Neither the flux of
linear energy,T , nor nonlinear energy,U , are con-
stant, but by convertingT into U , a constant flux of
total energy,T +U can be obtained. We are now at-
tempting to find if such a mechanism can produce a
cascade of total energy in a more realistic model of
wave turbulence where locality of interaction is not
assured a-priori. If so, this work will provide the first
concrete, generally applicable theoretical handle on
strong wave turbulence.
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